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l. Introduction

The analysis of steady plane deflagration waves invariably starts with the
combustion approximation where it is assumed that the Mach number, f.e. the flame
speed divided by a characteristic sound speed, is vanishingly small. The momentum
equation then implies that the pressure is nearly constant while the thermal
and mechanical descriptions of the wave decouple, so that the task of solving
for the structure is greatly simplified. Even then explicit formulas can only
_be obtained in the limit of large activation energy.

We are currently interested in describing, by means of activation-energy E
asymptotics as far as possible, the transition from deflagration to detonation '
in gases.5\0ne of the first steps in such a theory is to analyze deflagration
waves whose Mach numbers are not vanishingly small. Pressure variations cennot
be neglected and hence the momentum equation must be retained in the descrip-
tion of the structure. We will show, in the present paper, that the method of
activation-energy asymptotics gives an analytic description of these fast
deflagrations, i.e. deflagrations travelling at speeds greater than those Justi-
fying the use of the combustion approximation. 1In addition we examine the limit
of vanishingly small Mach number to shed light on the nature of the combustion
approximetion.

The main :&t is that the Mach number of a fast deflagration wave is
determined (implicitly) by the flame temperature, a parameter of the mixture.

But an interesting feature is a secondary reaction over an exponentially long

tail in which the small amount of reactant escaping the initial flame is finally
consumed. In addition, for small Mach numbers we find a hydrodynamic adjustment
layer behind the flame and another possible wave,neither of vhich can be detected by
the combustion approximation. ) In short, we have extended the classical work

of Bush and Fendell (1970) to finite Mach numbers, and uncovered the existence

of very slow deflagration waves.




2. The governing equations
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The governing equations of a plane, steady deflagration express the balances
of mass, momentum, energy and species. In deriving the equations used here cer-
tain assumptions are made, the most important being: steadinessyone-step reac-
tion, Arrhenius kinetics, ideal gas, Newtonian fluid, Fick's diffusion law,equal EE
specific heats and constant material properties. See Buckmaster & Ludford (1981).

In vhat follows o,v,T7 and Y are respectively the dimensionless density,
gas velocity, temperature and mass fraction of the deficient reactant (if there
is more than one). The density and temperature in the quiescent conditions
upstream are taken as units so that the dependent variables o,v,T,Y tend to
1,0,1,Y , as 8 + -, wvhere s denotes distance from the flame. The
distance unit is the preheat thickness A/cpM, wvhere ) and cP are respectively
the thermal conductivity and specific heat of the fluid; and M is the mass flux, . ]

the velocity unit being the flame speed. The other important parameters that

appear are defined in Table 1.
The Prandlt and Lewis numbers will both be set equal to one, solely to

simplify our discussion. Prandlt and Lewis numbers different from unity aYe

discussed in Appendix I.

The equations of steady plane combustion can then be shown to reduce to
nfav/as = ne(v-1) + (wvlo1), (1)
ar/as = a°t/as? + anve™®/T, (2)
Ts - (Y-l)Mﬁ\fglz,

t4ar =1+ (-1€/2 vithg= or__,

pV=21l with Vsvael,
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The perfect-gas law serves to define the pressure, which has been eliminated.
In the present formulation, V and T will be the basic variables, the
temperature T and mass fraction Y serving as auxillary variables defined by
(3) and (4) respectively. Thus equations (1) and (2) are to be solved under
the conditions that V,T =+ 1,1+(Y-1)M§/2 as 8 + -o and that the solution
is bounded as s + +», Equation (5) just defines the density. The singular
nature of equation (1) as Mb + 0 1leads to the adjustment layer mentioned

in the Introduction (cf. Secs. 5 and €).

3. Activation-energx asymptotics

We seek a solution of equations (1)-(4) in the distinguished limit
D= ceaexp(e/T,) vith 8 + = , (6)

Here the constants C and T, are supposed given; their determination
for an actual mixture is considered in Sec. 8. The connection between the

wave speed and the mass flux M 1is made explicit by writing

M= mM (7

(m is the so-called acoustic impedance). Thus the reaction term in

equatiaon (2) appears as

-8/T

nte™®’T o coPrexple (1/74-1/1)1 /20 (8)

As B + o, there are three possible regimes. In regions vhere T < T,,
the reaction term is exponentially small and hence negligible compared to

algebraic perturbations; the chemistry is frozen. 1In regions where T > T,,

TIPS JC Lo N, [ T - Yew)
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the reaction term is unbounded unless Y 1is zero to all order in e'l;

equilibrium prevails. Finally, the regions in vhick T - T, = 0(6—1) are
flame sheets, found to be characterized by a reaction/diffusion balance.
BEquilibrium regionsz will in fact only occur in the limit of the combustion

approximation.

D e T R

L. Fast deflagration waves

] We now determine the structure of fast deflegration waves. The flame sheet
is located at s = 0 and on either side the chemistry is frozen, as we shall

see. Expanding the variables in the form

E u= uo + e-lul oo (9)

and assuming Y is zero to leading order in the burnt reglon shows that

T =1+ge®+ (v-l)n?/2, Y =Y (1-e®) for s < 0,(10)
o o 0 -

and

T =148+ (7-1)142/2, Y, =0 for s>0. (11)

The solution for Vs requires some discussion. On both sides of the
flame sheet VS is governed by (1) where V and T are taken to leading

by (3). For s> 0 the

order and To is defined in terms of Vs and To

fixed points of equation (1) are

v, = () £ /1) - 2lrafsl/tyeil (12)
vhich shows that the restriction
(181272010 > 8 (13)

must be placed on Mo for a given heat release 8 . Equality corresponds

to the Chapman-Jouget deflagration, so that the present theory will yleld Mach

numbers in the range ;
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o< < =1+ ()= Are(y+1)8)2-1). (1)
Integrating (1) for s > 0 shows that
v :
v | * :
2y 1 | o+
vl (V,-v) @ v Tste (15)
lv-v_| ~

where c¢ is a constant. Since V_- V_ is positive, VB +V_ a8 8+ +e,
which is appropriate for weak deflagrations.

For s <0, we cannot integrate equation (1) analytically without further
assumption because T° contains e°. Nevertheless its integration with v =1
for s = -« determines the value V, = V;(Mﬁ) <V_ at s = 0. Determination
follows from the saddle-point nature of the cold-boundary point in the Tt,V-plane;
the inequality results from dVo/ ds2 0 for s > O, not a simple result to verify.
As a consequence T = decreases from its value T, at the flame because T/ is
constant.)

Since V, 1is determined by the integration for s <O, the constant ¢

in (15) is fixed and
Ty = TO(O) =1+8+ (y-1)r€(1-vﬁ)/2. (16)

“hus the flame temperature is determined as a function of the
flame speed, i.e. Nﬁ. If T, is a monotonically decreasing function of Ni,
which is usually found to be the case for reasonable values of 8,y,Pr, then

there is a unique Mﬁ for the given T, in the definition (6) of D. A typical '
plot of M@ vs. T, 1is shown in Fig. la.

Note that no discussion of higher-order terms or structure of the flame

. iy #e e

sheet 1s necessary to determine the flame speed. Only the minimal assumption
of continuity across the flame sheet is made. The analysis is distinctly different
from that for N% small (using the combustion approximation), where a discussion

of the structure (and hence higher-order terms) is needed to determine M.




-6-

On either zide of the flame sheet the perturbations of T and Y are

T -t_es for 8<0, 1y =1, for 8<0 and Y = -rlla; (17)
while Vi satisfies
YNfzdvl/ds = vl(Mi-'ro/\fi) + 1/V, forell s #0. (18)

The integration constants T, are determined by the flame-sheet structure, as
ve shall see next. Note that +t_ is not zero: an 0(s™!) amount of reactant
escapes burning and passes downstream where, over exponentially large diatances,

it is finally consumed. The process is described in Appendix II.

To investigate the structure, let

z = gs (19)

and consider the expansions

T= l+s+(y-l)bf§/2 + e'l¥l(z)+--.,v =V, + e'1\71(z)+..., Y= e"lil(z)-e... (20)

T=T, + e'l'rl(z)+... .

Then we easily find
¥, = 62 + v (0) vith &= Vy - 1+ (T,/V,-L)yiE, (21)

where Vi(o) is at this stage an unidentified constant. However, it follows
i by matching that Vi in the outer expansions is continuous across the flame
’ sheet, so that Vi(o) is in fact the common value there (hence the notation).
The solution of equation (18) is determined, once T, are found, by the upstream
condition Vi(-u) s Q. Clearly the upstream solution, and hence the constant

vl(o) in (21), depends on <t_ while the downstream solution depends on both

‘t+ and T_o

i
!
!
l
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The T -problem now becomes

. By

2" 2 l - ~
d°r,/az" = Are vith T, = 1, - (Y—l)»év.[ sz+v, (0}]

1

and A = C/marf, (22)

tl-sz+-r_+o(l)e.s zZ + -, %1-f++o(l)as Z > tw

vwhere the boundary conditions are obtained by matching. A transformation

reduces (22) to a structure problem discussed by Linan [19T4). Let

0= -;1/1'3, v = (v-l)rfov.s/e,
(23)

L= Bz/'r:‘: + svl(o)/a'rﬁ + (l/v)zn{szlzml:};
then

2
24 o/d;2 = gexp{~o-wg},

o = ~g-i_/T2 + ¥ (0)/gT + (1/W)an(g®/2RTh} + o(1) as gome (2k)
o= --r+/’1’a + o(1) as g+ tw.

Lindn found (numerically) that, whenever w is less than 1/2, a

solution of the equation {24a) is uniquely determined by the weaker boundary

conditions

do/dy +~1 88 [ +-em, dg/dy + 0 as  + +e. (25)

By adjusting the (finite) starting point for the left boundary condition

he was able to satisfy the right boundary condition, and thereby approximate

the parameters

g_{w) = lin (o+7), o (w) = 1im .
- gvteo
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For 0 <w <1/2, as is the case here, g, vas found to be positive while
o_ > 1.34k, g, +0 as v =*0. (Proof that w is less than 1/2 has been given

by Lu & Ludford (1981).] It follows that for our problem
2 2 2, = b 2
-T_/Ty + v (0)8/6T, + wown{g"/2hT,} = 0_, -1, /Ty = o, (27)

are thereé,determined.

To complete the determination of <t we must calculate Vi(O) in

terms of T_, which requires the equation (18) for \A in 8 <0 to be

integrated under the condition Vi(~~) = 0. The solution is

8
V. = 1 Q(s), with Q(s) =—-2$——e" (£(s)) (sl-2(s")) 40 (28)
1 _a(s), v s . J:wexp Ynivo(s') 8
s
where f(s) = ;l—- { (Mi-To/Vi)dS';
)
and hence
v (0) = ©_a(0). (29)

We now have asymptotic approximations to order e‘l in the three
regions, for any set of parameter values C,T.,m,B,y,Y_n. To summarize,
these approximations are determined as follows. First L and hence
Yol’is determined by solving the reactionless equation (2) on either
side of the flame sheet assuming continuity across the sheet and Yo = 0
for s > 0. The solution is given by equations (10) and (11). v, is
then determined by integrating equations (1) to leading order, numerically
for 8 < 0 and analytically [equation (15)] for s > 0. The temperature

follows from quatio‘ (3), depending in particular on Mb. Setting

e I . i
- : e i e . . A2

|

3
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To(O) = T, then fixes the flame speed (represented by Mo) as a function

of the flame temperature T,, according to equation (16). Fig. 2a is

the result of carrying out these steps for one particular set of parameters.
The approximation to the next higher order is obtained by solving

for Vi and =t

and (28), and determining the corresponding constants rt,vl(o) through

, In the outer regions (s §0), Se€ equations (17)

the relations (27) and (29). These relations are obtained from the structure
of the flame sheet and explicit integration of the equation for Vi in
s < 0, respectively.
Explicit analytical results can be obtained when the heat release
is small, in which case all variables stay close to their values upstream.

Note that this limit can be taken for any value of Mo, l.e.. it is quite

independent of the combustion approximation MQ + 0.

5. Small heat release:<;§7<< 1

The smallness of the heat release may be due either to a small heat of
reaction or to a small amount of reactant. It enables analytical expressions
to be developed for the results in Sec. 4 that otherwise have to be derived
by numerical integration.

We write

Vo =1 4 BV #eon, T, =1+ (y_l)}fo/z 487" oo
so that

Y, = (17" Jaherd? = 1 + B[r'-(Y-l)Miv'] *een




B Bl st g iinis ita

=10-

and
(33) nfav /as = ~(1E)V + 2, (33)
The solution which vanishes at 8 = -» and is continuous at s = 0 is

[l+(Y-l)M§]-les for s <0,

V' = (34)

(1) s/
.\[l-Mi]-l{l-YNfz[h(Y-l)M?o]'le I °}

for 8 >0 .

Note that when Mo is small a rapid hydrodynamic adjustment takes place

behind the flame sheet, given by the exponential term in(3% b). The combustion
approximation takes the thickness of this Mach layer [which is a consequence

of the singular nature of the differential equation (33) as Mo + 0] to be zero.

Consider the distinguished limit
T, =1+ Bt, Cs= %6 with g+ o. (35)

For t, in an eppropriate interval, T, 1is attainable, i.e. it lies
between the upstream temperature and the adiabatic flame temperature; and
T obtained from equation (27 a) , remains bounded as 8 + O. As
explained in Sec. 4, in order to determine the wave speed, we calculate
the temperature at s = 0 and set it equal to T,. Here the relation

between T, and Mz becomes explicit, namely
ty = 1/(1+(v-1)F] (36)

In particular, as T, approaches the adisbatic flame temperature Te.’ i.e.

t, + 1, the flame speed vanishes, i.e. Mi + 0. The restriction (13) on

/2y

the heat release is not violated unless Mi becomes close to Mocy- 1+ o0(g

thus t, varies between 1 and 1/Y < 1.
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To complete the analysis we calculate the 6-1 perturbations explicitly.

Details are omitted; suffice it to say that, to leading order in g, we find
6= 8/vw = [(v-1)/E, als) = [1/(1e(v-106)]e® (37

so that
v (0) = «_/[ae(=10€1, (38)

where, from equation (27 a),

1+(Y-1)M2°
(Y—.L)(l-Mi)

m
(o, + —LT—=tm{—2} (39)

In short, the solution to 0(6-1), both inside and outside the flame sheet,
is explicitly determined once ¢ and ty are specified. The flame speed is
determined by t, alone, while ¢ only enters at the perturbation. This
means that changing C affects the structure of the flame(&orresponding to
& slight translati;n)and hence the perturbation it produces upstream and

downstream, but not its velocity.

6. The Combustion Approximation

The limit b% + 0 must be examined carefully. But, before doing so, we
shall review the basic results of activation-energy asymptotics in the
combustion epproximation.

The combustion approximation is the limit Mo + 0 with ¢ fixed. The
activation-energy limit 6 + » is then used to analyze the resulting

equations. Thus 1lim 1im is obtained in contrast to 1lim lim which will
] M°->o Mo-vO R

be obtained from the above analysis. The pre-exponential factor C in the

Damkohler number is assumed to be such that X = C/m?Mg is 0(1).




To all orders in e'l, equations (1-5) with M =0 are correct

to leading order in a Nﬁ-expansion. We find immediately
'1'1'-tl'V,'1‘~l>a.Y=l-l-3-'.T.‘a (ko)
to all orders in e'l; and the leading order result

l+ ses for 8 < 0,
T - (41)

(_1 +8 for s > 0.

Standard flame-sheet analysis yields the structure problem
(22) which, with ;1, Ty replaced by il’Ta and M =0, becomes
2
- BT
1 faz® mppe P % with & = ¢/n2W
1 1 (]
(42)
il =gz+1_+0(l) as 2z + -, 51 =1, + o(1) as 2z + +=.

Clearly, T, is zero; otherwise the differential equation is not consistent

with the boundary condition at 2 = 4o, A first integral
n /m
T,/T

(aF /22)? = 220A[18(5 /12-1)e 1 %) (43)

is obtained by using the requirement " 0. The boundary condition

at z = -» will then he satisfied only if

o/T
A= 32/2Tt, i.e. DM'2 = - 3232e 3/2T‘?. (4k)

A further integration using the same condition ylelds

§I/T§
= ) ql-(e-1)et1H20at 4 £

(u5)

Bz - T_

1'

N\

ll‘i‘ b ikt i
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Thus, while the constant T, is zero, 1_ 1s undetermined; its definition
corresponds to locating an origin for the flame structure to O(e-l). For
the structure to exist, A must have the value (L4), corresponding to a
definite distinguished limit for D as MO -+ 0.

Returning to the fast deflagration with 6 + «» , we now let M, - 0.
First note from the discussion in Sec. 4 that Mo +0 as T, + Ta: the limit
of vanishingly small flames speeds corresponds to flame temperatures T,
indefinitely close to the adiabatic flame temperature Ta'

The only point at which there is difficulty im the limit is the unbounded

term
v~ lents?/2ind) (46)

in the formula (27). If, however, we set

k=P, tie. = glufanl, (1)
corresponding to
D= Bzmabé(T*)e 2exp(e /T“)/ZT’:, (48)

the term disappears and no difficulty remains. We have therefore constructed
a family of asymptotic solutions, parametrized by T,, which is uniformly

valid in the interval

T.c’< T.i Ta. (l‘g)

Moreover, the member T, = Ta of this family is one of the solutions obtained

by the combustion approximation.

i o'l inini s A, il Nl sl i SR Y S Bt 0 msind, ke it




L AW A A e o e

AL P S

-14-

Other uniformly valid familles can be obtained by taking
K= (52/2Tﬁ)[1+M§(T.)f(T,)] with f arbitrary. This would add a factor
1+ Nﬁ(T,)r(T,) to the right-hand side of (48) and change <t_ by an amount
depending on T,. Because of the exponential in the formula (48), any two such
families produce the same finite D for values of T, within O(e-l) of
each other. The corresponding members are therefore identical except for .,
a change which corresponds to translation of the wave by an O(e-l) amount.
The two members corresponding to Ty = Ty differ in the same manner,
reflecting the indeterminancy noted above for solutions under the combustion
epproximation.

When T, is excluded from the T,-interval a much larger class of uniformly

valid families of solutions, all identical under translations, can be obtained

by teking A to be an arbitrary function of Ty, 8gain because of the exponential

in D. Any such family which is not of the earlier type breaks down as
Ty + T, because the term (46) becomes unbounded in the limit, suggesting
that there are other solutions when M° is small, characterized by
perturbations that are large compared to oL,

We turn now to these solutions of our general equations, finally

demonstrating that they do not survive the combustion approximation. It

is therefore not surprising that they have escaped detection before.

7. _Very Slow Deflagrations

We now consider the distinguished limit

D= Coexp(e/T,), Ty =T, - glo)ty with o+ a, (50)

where g(go) 1s a positive guage function large compared to e-l and ¢,

is 0(1). We anticipate Mi = kg(o), with k = 0(1) positive, and look




=15~
for expansions of the form

u=u + g(e)u8 + e-lul $e0s (51)

Bas o g fe s

upstream and downstream of the flame. Thus the leadingeorder terms are given

by formulas (10) and (11) with M: =0 and V =T = . The g-perturbations

are then found by assuming continuity of '.l‘s and T (but not Vg) from

one side to the other, assumptions that can be justified by considering the !

structure of the sheet. Thus

S A R e

; T " (y-1)x/2 + [-rsw-(y-l)kleles, V8 R (y-l)kV§/2 for s < 0,
{d (s52)
T =7 . V8 = Tew ™ (y-l)k'rila + lcyg".!."1 for s> 0,

R R TRY T EEE

vhere rgw is an as yet undetermined constant. As expected from the discussion

e,

in Seec. 5, VB is discontinuous across the flame sheet so that a Mach layer is

required. We easily find the modification

Vs L P (Y-l)kTi/Z‘ *Ykﬁ‘l’a[l-ex‘p(-shk'l'ag)] for s> 0, (53)

which makes the necessary adjustment on a scale s = 0(g), much larger than

that of the flame sheet. The e-l-perturbations are found to be

=V =r__es for s< 0

S =V, =g, for s> 0, (54)

L S |

vhere <t s have to be determined.

To fix the constants Tgad s we must discuss the structure of the flame
sheet, where as usual the coordinate 2z = s8/¢ is appropriate. The equations
for the g-perturbations require their constancy through the flame sheet, so

that the expansions there are written L

. . >
P O L P T DR 1P et P L Loags v &
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Ve T, @V, +0 Vit ,t el +gT, 40 T +eer, (55)
in terms of which
By = g - OFUNT/2, R e - (Y12 (56)

according to the relations (3) ana (4).
We first show that ?BO must be zero. Assuming ?8' ¢ 0 and following
the steps leading to the structure problem (22) shows that a balanced equation

for ;l can only be obtained if
9= 'I':zne/(t, + Ts')e. (51)
The corresponding structure problem is

a°7,/d2° = ne & \ith A= -qof C/ke,
-1
(s8)

4t /az + g + o(1) a8 T + -a, d{l/dz +0o(l) as 2z + +=,

Clearly the bdoundary condition at gz = 4+ can only be satisfied if A = O.

Thus the assumption ?‘. ¥ 0 is incorrect and we must have

A
Y = - = - =~ - - <°
Y, =0 i, (v-1x/2, T, kt<o,

(59)

vhere t = (T 2 -1)(y-1)/2.

Balancing the 1;-equation with ?ﬂ = 0 leads to a different condition

on g, namely

(C/nzkg)elb{es(t. - kﬁ)/'ri} = f/zm'; , (60)

;
;:
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the Tl-structure being precisely that of the combustion approximation.

§ : Now we choose g to be the solution of
; e % . g, (61)

thereby obtaining a positive guage function soley dependent on ¢ with the

property 1 >> gl(e) >>6”%. Then equation (60) becomes

(c/a’x)expiogl(ty-kE) /T2 + 11} = gP/22", (62)
from vhich 6 disappears if
k= (6012)/E, foen O = (5, + T)g/A. (63)

This determines NFO as a (linear) function of t,.

| ' We are therefore considering a family of solutions for which

22
: : 8°m (t*+Ti) 222 (t.+T2)
3 C= —— 2, i.e. D= B&5S 2 exp | =2 ] (64)
1 ‘ 2Tt 2'1'2 t { Ta~tagle)

The family is paremeterized by t, which, since Mi is positive, cannot
be less than t, = -Ti’, s0 that the present theory is uniformly valid in

the interval

2
-T0 <ty S tyg < = for any t, . (65)

Elimination of ¢, and neglect of a term 0(632) in the exponential yields

'
} ; 222
]

p- EEp exple/(1,-M8)] (66)
a

q Other uniformly valid families can be obtained by taking 4

e e e e

e-BG = ag
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wvhich multiplies D by a factor & . Because of the exponential, any ’ :

two such families produce the same D for values of t, within O(e-lg-l)

of each other, so corresponding members are identical.

The wave speeds exhibited by (63) are vanishingly small in the limit
@ + », i.e. much smaller than those corresponding to thw combustion
approximation (which was shown in Sec. 6 to make correct predictions for Mo
small but finite as 6 + ®».) Thus the solutions in this section are very
slow deflagrations.

Now we shall demonstrate that the existence of these other solutions
cannot be detected by the combustion approximation, whose equations were
mentioned at the beginning of Sec. 6. With the distinguished limit and
the expansions of the present section, it can be shown that the flame-sheet

perturbation ig' must again be zero and that the structure prodlem is

(42) with
i = (c/n’kg)explogte/T ). (68)

As usual, A 1s found to be equal to 32/2T:; and that result together with

(61) leads to the analog of (62), i.e.

[\

(c/u’k)explog(ty/T+1)] = £,
a

-3

vhere the choice (61) is again made for g.

To eliminate 6 we must set

thereby losing t, es a parameter, and then
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c = (8/21) ), (72)

s0 that the solutions are now parameterized by k = Mﬁ/g directly. The

corresponding D 1is (66) with t = 0 which may be rewritten

D= B—’:Tg-— exp(S/Ta) (72)

on neglect of a term 0(652) in the exponential. But this formula is the
same as (L4); we have merely reproduced the results of Sec. 6, which hold
for small M up to 0(1) on the 9-scale, in the limit Nﬁ = 0(g).
Note that the only difference between formulas (66) and (72) isthe presence
of the term €M§, which results from the momentum equation neglected in the

combustion approximation.

8. Application of these results for large 6

The mathematical analysis provides an asymptotic solution when the
Damkohler number has the form (6) with C and T, specified. 1In practice,
however, D and 6 {large but finite) are given istead of C and T,,
which must now be calculated from the formulas (47) and (48). Sec. 4 can then
be expected to give an approximate solution, provided 6 1is large. The
calculation of T, is illustrated in Fig. 3, which graphs D as & function
of T, in a typical case. Note that D cannot exceed a certain value
corresponding to T, = Tucg (if a steady solution is to exist). As 6 + =
this upper bound increases indefinitely, so that for very large 8 effectively
any value of D leads to a steady deflagration. As D becomes small,

Ty = Tanndfke solution obtained through the combustion approximation is

recovered.
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The procedure is particularly transparent when the heat release is

small, Then, according to formula (36), _

T = D (13)
and the restriction that 0 :.M§ < N§CJ requires that {
Tagy =1+ B/Y < Ty < T, (1)
Thus
—-'L—x,- e2exp(o/T )y (75)
2(v-1)7, ‘T- ’ *

which clearly leads to & curve of the form shown in Fig. 3, the maximum

value of D Ybeing

222
BO . explo(1+g/y)]. (76)
2(1+g/v)

The results in Sec. T show that there is another possibility for
each value of D. The calculation of +t, from the equation (6kb) for
large 0 (g having been determined from equation (61))13 illustrated in Fig. 5.
The formulas of Sec. 6 can then be expected to provide an approximate solution.
Note that the second solution exists whatever the value of D, the wave ;T
speed(on the scale of 31/2) increasing monotonically from O to » as 5
D does so. .
Thus we have shown that, for a given D in an appropriate range, there
are in fact two distinct wave speeds, one for fast deflagrations as predicted
by (48) and illustrated for small heat release by equations (T73) and (75),

and one corresponding to very slow deflagrations as predicted by equation (6€).
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In the D/ma,Mi-plane both branches tend to the single curve (L&) obtained
by the combustion approximation, as N@ + 0. A typical plot of D/m2
versus N§ is shown in Fig. 5.

The existence of two wave speeds has been known for some time,
albeit in association with heat loss under the combustion approximation.
Indeed Spalding and Yamlu (1959) have reported experiments, involving
heat loss, in which two wave speeds were found. More recently, Buckmaster
(1976) described the slower of the two waves in the limit of vanishingly
small heat loss. (The faster wave tends to the familiar deflagration wave
with T, = T, , described in Sec. 6 for 6 + »,) However, a description of
the very slow waves under adisbatic conditions has apparently not been given

before.
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Appendix I: Pr, Le # 1 i

The assumptions of Prandtl and Lewis numbers equal to one were made for sim- i

plicity and are not essential. Here we give the changes that are required when :

we relax those assumptions,

The governing equations for general Pr, Le become

SadatiZa i e

1

yMgPrdV/ds - yMg(V-l) + TV -1 (17)

dT/ds + (y=1)TV 1dv/ds = yd°T/ds® (78) ;

TSR

+ Pry(y-l)Mi(dV/ds)z + ayYAe-e/T

dY/ds = Le—lsz/ds2 - AYe_e/T (19)

Equations (77) - (79) and equation (5) under the assumptions listed in Sec. 2
are the original equations that equations (1) - (4) were derived from. By suit-
able combination of equation (T7) and (78) one can show that <t as defined by

E (3) satisfies

' 2 2,2
ar L 471y (pre1) (y-n? 12D | hym®/T (80)
ds dsz o ds2

and from (80) and (79) H = T + oY satisfies

H= 148+ (-DM2/2 + 2 (@01 + @1 (-1MV?/2) . (81)]

The simplification given by the dual assumption that Pr = Le = 1 1is now obvi-
ous, equations (80) and (81) reducing to (2) and (4) respectively. Assuming the
Prandtl and Lewis numbers to be unity surely leads to great simplification which
motivated the form of our original discussion,‘but generally the variables
and B offer no advantage over the original variables T and Y which we now

will use in the following.




S

Reactionless equations for the 0(l) terms and 0(6-1) perturbations are

to be subject to appropriate conditions at 8 = -» and a set of jump conditions,

denoted by

(u] = u -u_ o, (82)

i derivable from a flame-sheet analysis. The leading order conditions are

[TO] = [Vo] = [YO] = [dVO/ds] = [dTo/ds + aLe-ldYo/ds] =0
; (83)

T =T, at s =0 and Y =0 for s >0
o

The solution of the leading-order problem for a given value of Mi determines the

function T, = T*(Mi) as in Sec. 4.

Similarily we find conditions on the 0(6_1) perturbations to be

| -1
1 ) [VI] = [T1 + ale 11]-0
2 -1 _ (84)
| [dv,/ds] = [T ]/yM Prv, , [dT,/ds + ale "dY,/ds] = (1/y-Le)[T ] |
é The structure problem in the flame sheet corresponding to (22), now written in
¥
% terms of Tl, becomes
3 g - -
afr, LT mE g~ . )
1 = -AdYe » T, +ale 'Y, = (dTo/ds+)z + T, + ale Y1+‘
2
\ 4 (85

T, » (dTo/ds_)z + Tl— as z -~ o, Tl + (dTO/ds+)z +T,, as J

z >+ o,

And as before (85) can be transformed into Linan's problem (24) to be solved un-

der conditions (26) with w specified as




’f_J,__;___;.---;.._;'

w o= - (dT /ds )/(4T /ds_-dT_[ds)) ; (dT /ds_-dT /ds ) =g .(86)

k solution of Lindn's problem then fixes the constants Y, » Y,, (analogous to |

A Tys T in Sec. 4),as ;

f” 2 |

L Y_ = LeT,(ato_)/a , Y, =Le T, /a (87) 3

i

3 with Q= 1/wlT /T2 +aq, - zn(azlz;u,e'rl’)l
1+ "% oo *

PR R

' The general problem as outlined is numerical; but the limit of small heat re-

lease yields explicit formulas, as it does in Sec. 5. To all orders in g the

em e o

solution for Y0 is given as

Ao

Le s

Y = Y (l-e ) for s <0 , Y = 0 for s >0 . (88)

Equations (TT) and (78), with the reaction term set equal to zero are to be solved

subject to the required jump conditions. Expanding Vo and To as

Vo=1+48v' 4., T =146T +.., (89) |
then v' and T' satisfy

dv'/ds = [(Yﬂz-l)v' + T']/PryMi ,

‘ (90 ;
a?1'/as? = [(y=1)av'/ds + 4T'/dS5] /¥ ! ‘
1} v , T'+>0 as s +-= , bounded as s +4= (91)
fv'] = [T'1 =0 , [dT'/ds] = -1,




- 25 -

e RN SOy

For 0 < Mz <1 we easily find

Als
(;.) 1 e for s <0 ,
1
o) o, (92)
1- ‘*2 *1) w1f ® °T 8%

R R SRR

e e m———

where

]
3 2 2 2 2.2 2 2 2
4 Aoy = (Oe1enel] s Apd-reend)? 4 4adipri)/2een? L (93)

Al and Az have the properties:

; 2 2
At Lo, oA, - -llynoPr as M ~+0 ,
) ) (%)
A - (y-1+Pr) /yPr , A, ~-(1-M°)/(Y—1+Pr) as M_~+1,
Setting T _(0) equal to T, of the definition (35) now shows that
(Y-l)A2
t* = Iy (95)

2
(hy=A}) (1=42) (YA =1)

which reduces to the formula (36) for Pr = 1. As there t,+1, il.e. T, -+ Ta

as M2 + 0.
o

These formulas determine Mo and the combustion field to leading order for

9 .
?; arbitrary values of Pr and Le when the heat release is small. Since xl
i:

& is positive and A, 1is negative for Mg < 1, the result (92) shows that the

2

velocity v' 1increase monotonically up to the flame and beyond, ultimately attain-

ing the value v'(w) = 1/(1-M§). On the other hand the temperature increases up

to the flame but then decreases to its final value T'(») = (1-7M§)/(1~M2). The
temperature and velocity profiles are therefore qualitatively unchanged from those i
i

for Pr = 1. See Fig.2a,b in Sec.4. However the pressure field, determined by the

N R

: |
| : perturbation !

— . e — '\_
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p' =T - v' (96)

is sensitive to the value of the Prandlt number. The pressure p' 1is zero as

8 = —» and reaches a negative final value p'(w») = -YM:/(I-Mg). In between, it
may or may not have a (positive) maximum depending on whether T'(0) 1s greater
or less than v'(0). For Pr = 1, they are equal so that the effect can be ex~

plicitly exhibited by taking Pr close to one. Thus we evaluate

A, (1-2))
(1-M°)(A2-x1)(yx1-1)
for
2 2
(Pr-1) (y=1)M (1-M7)
A - 1- rz ) 2 and A, - - —5° (98)
yMo +1- Mo yMo
to obtain
2
yM~ (Pr-1)
p'(0) ~ ——— . (99)
yM°+1-M°

For Pr > 1 there is a pressure spike at the flame, whereas for Pr <1 the de-
crease is monotonic with s from =-» to +», Presumably there is a similar
effect when the heat release is not small.

The discussion for very slow deflagrations found in Sec. 7 can also be gen-
eralized for Pr, Le # 1. Again the starting point is equations (77)-(T79).
Considering the distinguished limit given by (50) and allowing Mz = kg(8), the
analysis Pr, Le # 1 follows precisely as in Section 7 in that we must consider
outer regions s < 0, s > 0 and a velocity adjustment in the O0(g) Mach layer

behind the flame sheet. The detalled solution to 0(g) 1is more complicated than

that presented in Sec.74 involving terms that vanish when Pr = 1, but is obtained.

in o straightforward fashion.




— . ey

=W:'f¢wﬁ,“~"“‘-,'ﬁ"‘-‘wt"’”\‘w" "

Ry s Gk R
SIS RO R TR

- 27 -

Congideration of the flame structure requires as before that Y‘* = 0 and

thus equation (60) again holds with the right-hand side replaced with
s2/21%Le (100)

Following the remaining arguments in Sec. 7 we find the only change is the form

of D parameterized by t, which becomes

2
252 (£, +T))

m"8 6
= ~ exp [——_——Ta‘t*g(e) ] . (101)

D
ZTALe t
a




Appendix II: The Exponential Tail

It was shown in Sec. 4 that for any non-zero Mach number, the combustion field
is comprised of a frozen region upstream and a flame sheet followed by a frozen
downstream region where the temperature descreases from T,. Thus reactant es-
capes from the flame in an amount measured by the perturbation o, = -r+/Ti =
aY+/T§ > 0. (Note that the partial burning exhibited here holds for all non-zero
wave speeds, since Lin4n's problem controls the structure. In the limit
M(z) + 0, as in Sec. 74Y - 0.) Because of this non-zero reactant fraction there
must be further burning beyond, albeit exponentially weak, sc as to take the

reaction to completion.

Consider the expansions

VeV +1/6V, +..., t =1 +1/07, +...; T =T + 1/0T, +... T
© 1 © 1 3 1
(102)
where v.o=Vv. , 1 = 1+8+ (y—l)Mi/Z R TQ =148+ (y—l)Mz(l-Vi)
and the variable
-0/T
n=Ae 8. (103)

-8/T
Since T < T,, and A has the form implied by (8), Ae ® is exponentially

small compared to 6-1. Hence the derivative in equation (1) is negligible to

all orders in 9-1 and we find from (1), (3) and (4) that

2.2 2
Vl Tl(v /T YM V ) s Tl Tl (y l)M v Vl N Tl aYl . ( )

Eliminating V] and 'l‘1 in favor of T, now shows that




2
dr T -yM'V
1. N ol (2 _O=
an rlexp(arl) with a ") (T _sz )

T, = —Tic+ at n=0

1

is the problem for i3 im n > 0. (The boundary condition is obtained by mat~
ching with the burnt region immediately following the flame.)

An explicit solution can be given in terms of the exponential integral function

E (2) = f:e-tdt/t. Thus

>0 ,

QR >

El(-uTl) - E1(G°+) = n for

T - -o+g-n for ; =0 , (106)

>

El(arl) - El(-aa+) =n for a<0

(There is no si'ngdhﬂh’ of @ in (103) since T - Mng is positive for 0 <M <M oy

as is easily shown.)
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TABLE 1

Ratio of specific heats

Mach number of flame with respect }
to undisturbed speed of sound .;
Prandlt number

Lewis number !
Nondimensional heat of reaction

Activation energy

Damkohler number
2
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Captions:

Fis .

la. fo versus T, for Pr=1,Le=1l,y=5/3,8=.5 T, = 1.5

vhere “2

oCT = -225.

Fig 1b. M°2 versus t, for Pr=1,6le= 1, y= 5/3. Dashed line for

Fig.

Fig.

Fig.
Fisn

Fig.

F- .09 vhere Lf?

fcg ® +51. Solid line is the asymptotic result (34).

2a. Leading-order profiles of velocity, temperature, pressure and

mass fraction for Pr=1, Les= 1,y = 5/3,8 = .5, Mﬁ = ,2 corresponding
to T, = 1.43.

2b. Pressure profiles for general Le, Y= 5/3, Ms = .5 and various
Pr, showing a spike for Pr > 1.

3. D/m2 versus T, for Pr=1,Le=1, y=5/3, 8 =.09, 6 =50.

L, 1')/m2 versus t, for Pr =1, le=1, y=5/3, 8= .5, 8 =50.

5. ME versus D/m2 for fast and very slow deflagrations, Pr=1,

le =1, y=5/3, 3= .5, 6 = 50. Dvawn for Mack numbers at the
upper lims{ of aﬂvlicaf jon of the combusiion appreximaiion,
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